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Abstract. In this paper, the particles of quantum gases, that is, bosons and fermions are regarded as g-
ons which obey fractional exclusion statistics. With this point of departure the thermostatistical relations
concerning the Bose and Fermi systems are unified under the g-on formulation where a fractal approach is
adopted. The fractal inspired entropy, the partition function, distribution function, the thermodynamics
potential and the total number of g-ons have been found for a grand canonical g-on system. It is shown that
from the g-on formulation; by a suitable choice of the parameters of the nonextensivity q, the parameter
of the fractional exclusion statistics g, nonextensive Tsallis (q 6= 1) as well as extensive (q = 1) standard
thermostatistical relations of the Bose and Fermi systems are recovered.

PACS. 05.20.-y Classical statistical mechanics – 03.65.-w Quantum mechanics

1 Introduction

For thermodynamical systems which have high densities
of particles at very low temperatures, the criteria of be-
ing classical nλ3 � 1 where n is the density of the par-
ticles and λ is the thermal wavelength is no longer full-
filled. That means for very small temperatures as well as
for high densities the interaction in real systems are no
longer negligible and quantum effects are exhibited. The
influence of quantum effects can be very well suited by the
Bose and Fermi gas models where the corresponding well
known Bose-Einstein (BE) and Fermi-Dirac (FD) statis-
tics have fundamental importance for the understanding
of the physical systems. Indeed, a great number of phe-
nomena have been explained within the framework of BE
and FD quantum statistics. Are they, however, unique and
adequate to enlighten all the physical properties of the na-
ture? In this connection, where a fractal space is involved,
the quantum systems are expected to violate the standard
properties and the nonextensive thermostatistics [1–23] is
required.

The second point to be raised is how one can recon-
cile the standard statistics with fractional statistics, e.g.
para-statistics [24], intermediate statistics [25], fractional
exclusion statistics [26,27], etc.? Can BE and FD statistics
be unified as well as to include many other statistics?

Therefore, by adopting the fractional exclusion statis-
tics the generalization for quantum gases has been done
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within the context of nonextensive thermostatistics the
so-called Tsallis thermostatistics and finally the thermo-
statistics for bosons and fermions are unified.

The proposed formalism basically relies upon two pa-
rameters, one is usually called the entropic index; q ∈ R,
which takes care of the nonextensivity and it includes the
standard extensive quantities as a special case when q is
set to be unity and the other is the statistics parame-
ter g which may have fractional values representing the
ability of the occupancy of the single particle states by a
g-on, with g = 0 corresponding to usual bosons and g = 1
fermions [28–30].

The outline of this paper is as follows: in Sections 2
and 3, for the benefit of the readers the origin of the frac-
tal inspired entropies and derivation of Tsallis entropy are
stated. In Section 4, the generalized entropy of g-on gas
is obtained. In Section 5, due to the great importance of
the generalized mean occupation number for g-ons which
includes the standard extensive BE and FD distribution
as a special case where g is taken 0 for bosons and 1 for
fermions, the generalized g-on distribution is derived fol-
lowing two different methods. In Section 6, the partition
function, the thermodynamics potential, the total number
of a g-on system within the nonextensive formalism are
obtained. In Section 7, the basic equations of the ther-
modynamic potential and the total number of the g-on
system are calculated as an application, and their relation
to the Bose and the Fermi system are exhibited.



706 The European Physical Journal B

2 Measure, spectrum of fractal dimensions
and fractal inspired entropies

Consider a non-interacting quantum gas of N g-ons which
is not in thermodynamical equilibrium. Let the system be
in heat and particle baths, in other words, the total energy
E and the total number of g-ons N fluctuate, but the total
energy and the total number of g-ons are conserved on the
average, that is, a grand canonical ensemble is established.
The accessible states of the g-on system is given by the
set of the occupation numbers {n1, n2, ...nk, ...nK} where
nk denotes the number of particles in state k [31]. K is
the number of partitions of N particles. When a measure
is done on the set

Mq =
K∑
i

P qi , (1)

where Pi is the probability of the ith partition.
Let us introduce the definition Dq as the spectrum of

the fractal dimensions

Dq = lim
δ→0

1
q − 1

lnΩq
ln δ

(2)

or it can be written in an exponential form as

Mq = Ωq ≈ lim
δ→0

δ(q−1)D(q), (3)

where δ is the resolution related to the measure. From the
relation between the entropy and the spectrum of fractal
dimension, one of the fractal inspired entropies which is
known as Tsallis entropy can also be obtained. The re-
lation between the entropy and the spectrum of fractal
dimension is given as

Sq = −kB lim
δ→0

ln δDq (4)

where kB is the Boltzmann constant.
On the other hand, in view of equations (1, 2), the

spectrum of fractal dimension is obtained in terms of
probabilities:

Dq =
1

q − 1
lnΩq
ln δ

=
1

ln δ
ln
∑
P qi

q − 1
(5)

or

Dq ≈
1

q − 1

∑K
i=1 P

q
i − 1

ln δ
, (6)

since

lnMq ≈ lnΩq ≈
∑
i

P qi − 1. (7)

Then when equation (6) is substituted into equation (4),
Tsallis entropy is obtained:

Sq = −
∑K
i=1 P

q
i − 1

q − 1
(8)

where K can be regarded as the number of accessible
states of the system. In the limit q → 1 the well known
Shannon entropy is recovered.

S1 = −kB

∑
Pi lnPi. (9)

3 Nonextensive entropy of a g-on gas

The entropy of a quantum gas can be expressed in terms
of the statistical weights. The relation between the sta-
tistical weight of a g-on gas which takes into account the
statistics which it obeys and its thermodynamics is pro-
vided through statistical mechanics. From this point of
view, entropy is a bridge between micro and macrophysics.
Thus, the entropy of a g-on gas system has a very close
relation with the statistics it obeys.

In this section, the fractal inspired entropy of a non-
interacting g-on gas system, which is not in equilibrium
has been obtained in terms of the occupation numbers.

The statistical weight of a g-on gas system which is not
in equilibrium obeying the fractional exclusion statistics,
is given by [27,28]

Ω(g) =
K∏
k=1

[gk + (nk − 1)(1− g)]!
nk![gk − gnk − (1− g)]!

· (10)

There are exactly Ω(g) ways to distribute the indistin-
guishable nk g-ons over the gk states in a certain cell,
where gk is the number of states in group k, i.e. the de-
generacy, nk is the number of particles in these states (oc-
cupation numbers), g is a statistics parameter 0 ≤ g ≤ 1,
indicating the ability of a particle to occupy a single par-
ticle state, with g = 0 corresponding to usual bosons and
g = 1 to fermions [36,37].

In order to find the nonextensive entropy of a g-on gas
fractal dimension Dq is needed. By using equation (10)
and following the generalizing technique in reference [15].

D(g, q) =
∞∑
k=1

uqk − v
q
k − n

q
k

(q − 1) ln δ
(11)

is obtained for the g-on system, where

uk = gk + (nk − 1)(1− g) (12a)

and

vk = gk − gnk − (1− g). (12b)

Equation (11) can be rewritten as [15]

D(g, q) =
K∑
k=1

gk
uqk − v

q
k − n

q
k

(q − 1) ln δ
(13)

where for simplicity

uk →
uk
gk
→ 1 + nk(1− g) (14a)

vk →
vk
gk
→ 1− gnk, nk →

nk
gk

(14b)
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are taken in place of the corresponding expressions.
Using equation (12), the fractal inspired entropy of

g-on system is found:

S(g, q) = kB

K∑
k=1

gk
[1 + nk(1− g)]q − [1− gnk]q − nqk

q − 1
(15)

where equations (14a, 14b) are used. The moment order q,
which appears in the entropy for the g-on system, there-
after will be called as entropic index; in case of q → 1 limit
equation (15) reads:

S(g, 1) = kB

K∑
k=1

gk[1 + nk(1− g)] ln[1 + nk(1− g)]

− [1− gnk] ln[1− gnk]− nk lnnk. (16)

Equation (16) may lead to the usual entropy of the Fermi
system S(1, 1) and of the Bose system S(0, 1) for g = 1,
and g = 0 respectively. Thus

S(g, 1) = ∓kB

K∑
k=1

gk[±nklnnk ± (1∓ nk)ln(1∓ nk)]

(17)

where upper signs should be taken for the Fermi systems
and the lower signs for the Bose systems.

4 Derivation of the generalized distribution
function of a g-on system

We assume that the H-theorem is valid for the generalized
g-on system whose entropy is S(g, q). Therefore, the H-
theorem, can be used to find the distribution function of
the g-on gas. In course of time, the entropy of the g-on
system must incline towards a maximum in accordance
with Boltzmann’s H-theorem, i.e. equilibrium state. The
problem is to find n̄k such that the equation of entropy for
the g-on gas has a maximum under the constraints [15]

Nq =
K∑
k

gkn
q
k (18a)

Eq =
∑

gkεkn
q
k (18b)

which means that the total particle number and the total
energy of the g-on gas respectively are conserved. The con-
straints are imposed for a macrocanonical ensemble where
the g-on gas of the total particle number and the total en-
ergy may fluctuate by conserving these quantities on the
average. This method of undetermined Lagrange multipli-
ers take the constraints (18a) and (18b) into account.

For this aim, the expression

F (g, q) = S(g, q)− αNq − βEq (19)

is constructed. The values of α and β have been identified
as β = 1

T α = −βµ where T is temperature, µ is chemi-
cal potential and Boltzmann constant kB is set to unity.
When equations (15, 18a, 18b) are substituted into equa-
tion (19), after a partial differentiation with respect to nk
and equating δF (g, q) to zero, the following equation is
obtained

K∑
k=1

{
(1− g)[1 + nk(1− g)]q−1 + g(1− gnk)q−1 − nq−1

k

− α(q − 1)nq−1
k − β(q − 1)εkn

q−1
k

}
= 0 (20)

where we assume nk, gk � 1 and Stirling formula is used.
Since we have imposed two constraints by implementing
two Lagrange multipliers, we may assume that here the
variations δnk are mutually independent. Then each coef-
ficient in equation (20) must vanish:

(1− g)[1 + nk(1− g)]q−1 + g(1− gnk)q−1 − nq−1
k

− α(q − 1)nq−1
k − β(q − 1)εkn

q−1
k = 0 (21)

thus

(1− g)[1 + nk(1− g)]q−1 + g(1− gnk)q−1 =

nq−1
k + α(q − 1)nq−1

k + β(q − 1)εkn
q−1
k . (22)

Unfortunately, equation (22) does not allow us to find an
analytical expression for n̄k. In order to have a solution
for n̄k now let us write the left hand side of equation (22)
in a more compact form, i.e.

(1− g)[1 + nk(1− g)]q−1 + g(1− gnk)q−1

≈
q−1∑
r=0

Crq−1[(1− g)r+1 + (−1)rgr+1]nrk

≈ [1 + (1− 2g)nk]q−1 (23)

where Crq−1 is the usual combinatorial term. The term in
the parenthesis on the left hand side of equation (23) is
approximated as:

[(1− g)r+1 + (−1)rgr+1] ≈ (1− 2g)r. (24)

Then equation (22) reads

[1 + (1− 2g)nk]q−1 = nq−1
k + α(q − 1)nq−1

k

+ β(q − 1)εkn
q−1
k . (25)

Now the most probable distribution of the Nq g-ons over
the single states is solved:

n̄k(g, q) =
1

[1− (1− q)β(εk − µ)]
1
q−1 + 2g − 1

(26)

where α and β are substituted into equation (26). n̄k(g, q)
can now be interpreted as the number of g-ons per energy
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level which unifies the form of the generalized quantum
distributions for bosons and fermions. It is obvious that,
for g = 1 the generalized Fermi-Dirac n̄k(1, q) and for
g = 0 the generalized Bose-Einstein distribution n̄(0, q)
are recovered [15]. It should be remarked that, n̄k(g, q)
also includes the standard distribution functions for exten-
sive systems that is n̄k(1, 1), n̄k(0, 1) n̄k (1/2, 1) for quan-
tum (Fermi and Bose) and classical systems, respectively.
Equation (26) may also lead to a generalized Planck dis-
tribution for µ = 0 and g = 0 [36,37]. Standard Planck
distribution is recovered for µ = 0, g = 0 and q = 1.

5 Generalized grand canonical description
of a g-on system

Because of the great importance of the generalized mean
occupation number of a g-on gas we want to rederive
it using the generalized grand canonical partition func-
tion. Along this line, we introduce for the first time a
generalized partition function Z(g, q) for grand canonical
ensemble of a g-on gas within the factorization method
which has been developed by the authors of the present
article [15];

Z(T, V, g, µ, q) =
∞∏
k=1

{
1∑

nk=0

[1 + (q − 1)nkxk]
1

1−q

+(1− g)
∞∑

nk=2

[
[1 + (1− q)nkxk]

1
1−q
]}
(27)

where

xk = β(εk − µ). (28)

is taken. Equation (27) can be regarded as a unified par-
tition function of quantum gases. It is obvious that for
g = 0 the generalized partition function of the Bose gas
Z(T, V, 0, µ, q) and for g = 1 the generalized partition
function of the Fermi gas Z(T, V, 1, µ, q) are included in
equation (27). Following the method in reference [15] the
generalized distribution function of a g-on gas can be ob-
tained by using equation (27), then, one ends up with the
same given by equation (26).

6 Thermodynamics of the g-on gas

In order to obtain the thermodynamics formulations of
the g-on gas Φ(T, V, g, µ, q) is required. The generalized
thermodynamics potential of the g-on gas, however, is ob-
tained by incorporating the partition function with the
relation

Φ(T, V, g, µ, q) = −kBT lnZ(T, V, g, z, q) (29)

where summation is done on all of the quantum states. By
taking into account equation (27) one derives

Φ(T, V, g, µ, q) = −kBT
K∑
k=1

ln
[
1 +

1
ωk

]
(30)

where

ωk = [1− (1− q)xk]
1
q−1 + g − 1. (31)

In q → 1 limit, equation (30) may be compared with equa-
tion (4.2) of reference [27]:

Φ(T, V, g, µ, 1) = −kBT
K∑
k=1

ln
[
1 +

1
exk + g − 1

]
· (32)

In the mean time, in view of equation (31), equation (26)
can be rewritten in terms of ωk as

n̄k(g, q) =
1

ωk + g
· (33)

Since the generalized thermodynamics potential is

Φ(T, V, g, µ, q) = −pV (34)

the pressure of a g-on gas is obtained:

pqV = kBT
∑
k

ln
(

1 +
1
ωk

)
· (35)

While the total number of particles is found as

Nq =
∑
k

n̄k(g, q) =
∑
k

1
ωk + g

· (36)

The state of the gas is determined by equations (35, 36).
The energy of the gas, however, is given by

Eq =
∑
k

n̄k(g, q)εk =
∑
k

εk
ωk + g

· (37)

where equation (33) is taken into account.
In order to calculate the thermodynamics potential,

the total number of particles, internal energy, etc. of the
g-on system, while including the correction due to the
nonextensivity one may need the Taylor expansion of
the distribution function of the g-on gas system. There-
fore, the Taylor expansion of equation (26) is written:

n̄k(q, g) = n̄k(g, 1) +
1
2

(q − 1)x2
kn̄

2
k(g, 1) +O(q − 1)2

(38)

where

n̄k(g, 1) =
1

exk + 2g − 1
· (39)

It should be noted that all terms in equation (38) are
written in the exponential forms which mathematically are
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Q(T, V, g, z, q) =
2

3
Aβ

8>>><
>>>:

z

Z ∞
0

ε3/2

eβε − (1− 2g)z
dε+

1

2
(q − 1)β2z

�Z ∞
0

ε5/2e−βε

(1− z(1− 2g)e−βε)2

�

−2µ

Z ∞
0

ε3/2e−βε

(1− z(1− 2g)e−βε)2
+ µ2

Z ∞
0

ε1/2e−βε

(1− z(1− 2g)e−βε)2

9>>>=
>>>;

(45)

favourable. Apart from the first term, the rest of the terms
can be interpreted as a correction due to nonextensivity of
the entropy, each of which lead to zero in the limit q → 1.

As a first concrete application of the generalized frac-
tional exclusion statistics we want to calculate the proper-
ties of an ideal gas of nonrelativistic indistinguishable g-on
system. Our aim is now to calculate the generalized grand
canonical partition function, or more simply, its logarithm
Q(T, V, g, z, q), then the grand canonical thermodynamics
potential according to equation (29) is found. In view of
equation (30), Q(T, V, g, z, q) is given as

Q(T, V, g, z, q) = lnZ(T, V, g, z, q) =
∑
k

ln
[
1 +

1
ωk

]
·

(40)

Let one of the g-on energies εk are those of the energies of
a free quantum mechanical particle in a box of volume V .
The chemical potential or fugacity z are not fixed, but the
total number of g-ons are conserved on the average and
z has to be determined from equation (36). For a large
volume the sum over all of the single-g-on states can be
given as the single-g-on density states, where spin is not
taken into account.

D(ε) = Aε1/2 (41)

can be written, where

A =
2πV
h3

(2m)3/2. (42)

Thus, the summation in equation (40) becomes

Q(T, V, g, z, q) = A

∫ ∞
0

ln
[
1 +

1
ωk

]
ε1/2dε (43)

where equation (41) is taken into account. When the
integration is performed by parts Q(T, V, g, z, q) is
reduced to:

Q(T, V, g, z, q) =
2
3
Aβ

∫ ∞
0

ε3/2n̄(g, q)dε. (44)

After the substitution of equation (38) into equation (44)
and then rearranging,

see equation (45) above

is obtained. The integrals are performed using the related
formulae of pp. 326 and 330 of reference [38] since the

necessary conditions are met. Thus one concludes that,
for a nonextensive g-on system

Q(T, V, g, z, q) =
2
3
Aβ

{
zF5/2(g, z) +

1
2

(q − 1)β2z

×
[
F7/2(g, z)− 2µF5/2(g, z) + µ2F1/2(g, z)

]}
(46)

where the definition

Fn(g, z) =
Γ (n)

z(1− 2g)βn

K∑
k=1

[k(1− 2g)]k

kn−1
(47)

is adopted in which Γ (n) is the usual gamma function.
Then the state of the nonextensive system is determined
by the following equation:

pV = kBTQ(T, V, g, z, q). (48)

It is obvious that the value of Q(T, V, g, z, q) for a Bose
system is obtainable by taking g = 0 while for a Fermi
system by g = 1. ε = 0 plays a special role in the Bose
system since it is not taken into account by the integrals,
therefore one has to explicitly account for the terms in the
sums in equations (36, 40) in the transition from summa-
tion to integration.

In the thermodynamics limit, that is in the limit of
infinite volume with particle density held fixed, particles
in the ground state, having no kinetic energy do not con-
tribute to the pressure, then, in terms of the thermal wave-
length, the pressure of a Bose system become, as it is
expected,

p =
kT

λ3

∞∑
k=1

zk

k3/2
(49)

where Γ
(

5
2

)
=
√
π

22 3 is taken.
In a similar manner, the thermodynamical properties

of a Fermi system follows immediately from the logarithm
of the grandpartition function of a g-on system, which
is given by equation (46). In terms of the thermal wave-
length, the pressure of the Fermi system is

p = gs
kBT

λ3

∞∑
k=1

(−1)k−1zk

k5/2
(50)

where gs is due to spin.
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7 The total number of the g-on gas

For a large volume, in accordance with equation (36), the
total number of g-ons, could be written as

N(T, V, g, z, q) = Az

∫ ∞
0

ε1/2

eβε − z(1− 2g)
dε

+
1
2

(q − 1)Aβ2z

∫ ∞
0

(ε− µ)2ε1/2e−βε

(1− z(1− 2g)e−βε)2
(51)

assuming that the single number g-on states can be calcu-
lated in terms of integrals. The performance of integrals in
equation (51) using the related integrals in reference [38],
pp. 326 and 330, leads to:

N(T, V, g, z, q) = AzF3/2(g, z) +
1
2

(q − 1)Aβ2z

× [F7/2(g, z)− 2µF5/2(g, z) + µ2F3/2(g, z)] (52)

where Fn(g, z) is given by equation (47). This is the for-
mula for the total number of a g-on system. If g = 0
and g = 1 is substituted in equation (52), the for-
mula for the total number of a nonextensive Bose sys-
tem N(T, V, 0, z, q) and for a nonextensive Fermi system
N(T, V, 1, z, q) are recovered respectively.

For the total number of bosons in the extensive Bose
system, however, the parameter of statistic g = 0 and the
entropic index q = 1 are taken in equation (52). Thus,
for an extensive Bose system the total number of parti-
cles N(T, V, 0, z, 1) including ε = 0 energy states is found
to be:

N(T, V, 0, z, 1) = AzF3/2(0, z) +
z

1− z (53)

where the last term N0 = z
1−z represents the contribution

of the energy level ε = 0 to the mean particle number and
F3/2(0, z) is given by equation (47).

In a similar manner, for the total number of fermions
of the extensive Fermi system the parameter of statistics
g = 1 and the entropic index q = 1 are substituted in
equation (52). Thus, for an extensive Fermi system, the
total number of fermions N(T, V, 1, z, 1) is derived.

The total number of fermions is find in terms of the
thermal wavelength as

N(T, V, 1, z, 1) = gs
V

λ3

∞∑
k=1

(−1)k−1zk

k1/2
(54)

where Γ (3/2) =
√
π/2 is taken, and this is an expected

standard result [36,37].

8 Conclusions

In this study, a unified grand canonical description of the
nonextensive thermostatistics of quantum systems have
been achieved. This study has been initiated from the

point of departure of bosons and fermions, which obey dif-
ferent statistics, could be regarded as a one-particle, sim-
ply, g-on which obey fractional exclusion statistics. Then
using the fractional exclusion statistics where g-on num-
ber g is involved, and g might have fractional values as
well, the thermostatistical relations which concerns quan-
tum systems are unified, within the framework of nonex-
tensive formalism which is introduced by C. Tsallis where
entropic index q is involved. In this context for a grand
canonical ensemble the fractal inspired entropy, the par-
tition function, the distribution function, the thermody-
namics potential, the total number of particles, the state
of a g-on system are obtained. It is clearly shown that for
g = 0 and for g = 1 the above mentioned quantities lead
to corresponding quantities of a Bose and a Fermi system,
respectively, while taking into account the nonextensivity
of the systems involved. Furthermore, when the entropic
index q is set to one, the corresponding quantities for Bose
and Fermi extensive systems i.e. standard relations are re-
covered.

Authors would like to thank Ege University Research Fund for
their partial support under the Project Number 98 FEN 25.
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